Constraint Satisfaction Problems

CE417: Introduction to Artificial Intelligence
Sharif University of Technology
Fall 2022

Soleymani

“Artificial Intelligence: A Modern Approach”, 3™ Edition, Chapter 6
Most slides have been adapted from Klein and Abdeel, CS188, UC Berkeley.

Constraint Satisfaction Problems

Outline

- Constraint Satisfaction Problems (CSP)

Representation for wide variety of problems
CSP solvers can be faster than general state-space searchers

Backtracking search for CSPs
Inference in CSPs

Problem Structure

Local search for CSPs

What is CSPs?

- In CSPs, the problem is to search for a set of values for the
variables (features) so that the assigned values satisfy
constraints.

- CSPs vyield a natural representation for a wide variety of
problems

CSP search algorithms use general-purpose heuristics based
on the structure of states

What is CSPs?

- Components of a CSP
X is a set of variables {X4, X, ..., X,;}
D is the set of domains {D4, D, ..., D,,} where D, is the domain of X;

C is a set of constraints {Cy, C5, ..., C,,;}
Each constraint limits the values that variables can take (e.g., X; # X))

- Solving a CSP

State: An assignment of values to some or all of the variables

Solution (goal): A complete and consistent assighnment

Consistent: An assignment that does not violate any constraint

Complete: All variables are assigned.

CSP Examples

CSP: Map coloring example

- Coloring regions with tree colors such that no neighboring
regions have the same color
Variables corresponding to regions: X = {WA,NT,Q,NSW,V,SA, T}
The domain of all variables is {red, green, blue}

Constraints: adjacent regions must have different colors
C ={SA+WA,SA+ NT,SA+#Q,SA+ NSW,S +V,

WA # NT,NT # Q,Q #= NSW,NSW % V}

- A solution:
{(WA = red ,NT = green,Q = red,
NSW = green,V =red, T = green}

Example: N-Queens
+ Variables: {Q1,Q, Qn}
- Domains: {1,2, ..., N}

- Constraints:
Implicit: Vi, j # i non_threatening(Q;, Q;)

Explicit: (Q;, Q;) € {(1,3),(1,4), ..., (8,6)}

_
. W
1
|

Example: Sudoku

8|4 6| 17V

1 /
\

1| |3 9

6| |8 4| |3
2 ols| |1
7 2 4
26| /)

> /

Variables:

Each (open) square
Domains:

{1,2,...,9}
Constraints:

9-way alldiff for each column
9-way alldiff for each row
9-way alldiff for each region

(or can have a bunch of
pairwise inequality
constraints)

Varieties of CSPs and constraints

10

Varieties of CSPs

- Discrete Variables
Finite domains
Size d means O(d") complete assignments

E.g., Boolean CSPs, including Boolean satisfiability (NP-
complete)

Infinite domains (integers, strings, etc.)
E.g., job scheduling, variables are start/end times for each job
Linear constraints solvable, nonlinear undecidable

- Continuous variables

E.g., start/end times for Hubble Telescope observations
Linear constraints solvable in polynomial time by LP methods

11

Varieties of constraints

Varieties of Constraints

Unary constraints involve a single variable (equivalent to
reducing domains), e.g.:

SA # green

Binary constraints involve pairs of variables, e.g.:
SA #= WA

Higher-order constraints involve 3 or more variables:
e.g., cryptarithmetic column constraints

Preferences (soft constraints):
E.g., red is better than green

Often representable by a cost for each variable
assignment

Gives constrained optimization problems
(We’ll ignore these until we get to Bayes’ nets)

12

Real-world CSPs

Assignment problems: e.g., who teaches what class

Timetabling problems: e.g., which class is offered when and where?
Hardware configuration

Transportation scheduling

Factory scheduling

Circuit layout Mmoo [w [T | F
Fault diagnosis | _"’j::
|
... lots more!
\ : —
|

Many real-world problems involve real-valued variables...

13

Solving CSPs

Solving CSPs as a systematic search problem

Initial State: No assignment { }

- Actions or successor function: assign a value to an unassigned
variable that does not conflict with current assignment

- Goal test: Consistent & complete assignment

Path cost: not important

We'll start with the straightforward,
naive approach, then improve it

15

Properties of CSPs as a systematic search problem

- Generic problem formulation: same formulation for all CSPs
- Every solution appears at depth n with n variables

- Which search algorithm is proper?
Depth-limited search

- Branching factor is nd at the top level, b = (n — l)d at depth

[, hence there are n! d" leaves.

However, there are only d™ complete assighnments.

16

Assignment community

- When assigning values to variables, we reach the same partial
assignment regardless of the order of variables (W)

nxd @

A\ WA WA NT /NT
(nXd)X((n — 1)xd)

WA WA WA ONT
NT NT NT WA l
Equal! nlxdn

There are n!xd" leaves in the tree but only d» distinct states!

17

Backtracking search

¥

18

Backtracking search

Backtracking search is the basic uninformed algorithm for solving CSPs

- |ldea 1: One variable at a time

Variable assignments are commutative, so fix ordering
i.e., [WA =red then NT = green] same as [NT = green then WA = red]
Only need to consider assignments to a single variable at each step

- ldea 2: Check constraints as you go
i.e. consider only values which do not conflict previous assignments
Might have to do some computation to check the constraints
“Incremental goal test”

- Depth-first search with these two improvements
is called backtracking search (not the best name)

- Can solve n-queens for n = 25

19

Backtracking search

- Depth-first search for CSPs with single-variable assignments is
called backtracking search
assigns one variable at each level (eventually they all have to
be assigned.)

- Naive backtracking is not generally efficient for solving CSPs.
More heuristics will be introduced later to speedup it.

20

Backtracking search

- Nodes are partial assienments

- Incremental completion

Each partial candidate is the parent of all candidates that differ from it
by a single extension step.

- Traverses the search tree in depth first order.

- At each node c

If it cannot be completed to a valid solution, the whole sub-tree rooted
at c is skipped (not promising branches are pruned).

Otherwise, the algorithm (1) checks whether c itself is a valid solution,
returns it; and (2) recursively enumerates all sub-trees of c.

21

Search tree
» Variable assighments in the order: WA, NT, Q, ...

WA=red WA=green WA=blue
/ \ [[
\
WA=red WA=red | NT Q
NT=green NT=blue WA | SA Naw
1 SW
I I V\
WA=red WA=red b_L[:\‘ T
NT: =g£een IgT Z,;reen —]
O=re)=blue
A/\
e &
/\

Sl =

22

General backtracking search

function BACKTRACK (v) returns a solution, or failure
if there is a solution at v then return solution
for each child u of v do
if Promising(u) then
result « BACKTRACK (u)
if result # failure return result

return failure

function BACKTRACK (assignment, csp) returns an assignment, or failure
If assignment is complete then return assignment
var < select an unassigned variable
for each val in Domain(var) do
if Consistent(assignment U {var < value}, csp) then

result < BACKTRACK (assignment U {var « value}, csp)

if result # failure return result
return failure

23 Backtracking = DFS + variable-ordering + fail-on-violation

24

4-Queens

26

4-Queens

27

28

4-Queens

29

4-Queens N

| A |
+
30 Solution

Naive backtracking (late failure)

- Naive backtracking is not generally efficient for solving CSPs.

- Map coloring with three colors

{WA = red, Q = blue} can not be completed.

However, the backtracking search does not detect this before
selecting but NT and SA variables
WA = re’d/.

[V VAT Q= blue Variable NT has no
WA \ Q NSW possible value. But

- SA 1% it is not detected
| IVN‘\W T until tying to assign
it a value.

SA
T NT

31

Improving backtracking

General-purpose ideas give huge gains in speed

Filtering: Can we detect inevitable failure early?

Ordering:
Which variable should be assigned next?
In what order should its values be tried?

Structure: Can we exploit the problem structure? ()

2 O,

Filtering

- Filtering: Keep track of domains for unassigned variables
and cross off bad options
Filtering by inference (looking ahead) in solving CSPs

33

Forward Checking (FC)

- When selecting a value for a variable, infer new domain
reductions on neighboring unassigned variables.

Terminate search when a variable has no legal value

“\ NTL
—Q
S WAISA Nsw
f V\
WA NT Q NSW \' SA T T

34

Forward Checking (FC)

- When selecting a value for a variable, infer
reductions on neighboring unassigned variables.

Terminate search when a variable has no legal value

WA = red

35

L

S5~

new domain

Forward Checking (FC)

- When selecting a value for a variable, infer new domain
reductions on neighboring unassigned variables.

Terminate search when a variable has no legal value

WA =red
Q = green

36

L

NT

SEa =

Q

NSW

S—4-2

Vv

SA

Forward Checking (FC)

- When selecting a value for a variable, infer new domain
reductions on neighboring unassigned variables.

Terminate search when a variable has no legal value

WA = red
Q = green
V = blue

WA

L

NT

SEa =

Q

NSW

V'

SA

S =~ =

T

N
WA sa

= {WA =red, Q = green,V = blue} is an inconsistent partial assignment

37

1

Q

@
Vv

T

Example: 4-Queens

X1 - X2

1 2 3 4 {1121314} {1121314}
X3 X4

{1121314} {1121314}

38 4-Qeens slides have been adopted from Dorr’s slides on CMSC-421 course

Example: 4-Queens

X1 - X2
1 2 3 4 {1121314} {1121314}
X3 X4

{1,2,3,4} {1,2,3,4}

39

Example: 4-Queens

X1 X2
{1121314} { 4 1314}
X3 X4

{ 121 I4} { 12131 }

40

Example: 4-Queens

X1 X2
{1121314} { 4 1314}
X3 X4

{ 121 I4} { 12131 }

41

Example: 4-Queens

X1 X2
{1121314} { 4 1314}
X3 X4

{,,.,} L, .3)

42

Example: 4-Queens

X1 X2
{1121314} { I 7 I4}
X3 X4

{ 121 I4} { 12131 }

43

Example: 4-Queens

X1 X2
{1121314} { I 7 I4}
X3 X4

{ 121 I4} { 12131 }

44

Example: 4-Queens

X1 X2
{1121314} { I 7 I4}
X3 X4

{,2,} L, .3)

45

Example: 4-Queens

X1 X2
{1121314} { I 7 I4}
X3 X4

{,2,,} L, .3)

46

Example: 4-Queens

X1 X2
{1121314} { 4 1314}
X3 X4

{,2,,} L,)

47

Filtering: shortcoming

- Forward checking propagates information from assigned to
neighboring unassigned variables, but doesn't provide early
detection for all failures:

WA NT Q NSW v SA
| NT i ENEENFEETEINfEINTEINT
‘SANSW I EEFEENEIETNE [

-~ L L] H EiEEEm L]

- NT and SA cannot both be blue!
- Why didn’t we detect this yet?
- Constraint propagation: reason from constraint to constraint

48

Consistency of a single arc

An arc X = Y is consistent iff for every x there is some y which could be
assigned without violating a constraint

- WA NT
Q
SA 11 N

NT -> WA ——— y
If NT = blue: we could assign WA = red Delete from the tail!
If NT = green: we could assign WA = red
If NT = red: there is no remaining assignment to WA that we can use
Deleting NT = red from the tail makes this arc consistent

Forward checking: Enforcing consistency of arcs pointing to each new
assignment

49

Arc consistency

- Xj is arc-consistent with respect to X;

if for every value in D; there is a consistent value in D;

- Example
Variables: X = {X{, X,}
Domain: {0,1,2, ..., 9}
Constraint: X; = XZZ

Is X1 is arc-consistent w.r.t. X,?

No, to be arc-consistent Domain(X;) = {0,1,4,9}
Is X, is arc-consistent w.r.t. X;?

No, to be arc-consistent Domain(X,) = {0,1,2,3}

50

Arc consistency of an entire CSP (1/06)

- A simple form of propagation makes sure all arcs are consistent:

NT Q WA NT Q NSW Vv SA
SA [|]| [m E[ErE] O
\V\ '\/

- Arc V to NSW is consistent: for every x in the tail there is some y in
the head which could be assigned without violating a constraint

51

Arc consistency of an entire CSP (2/6)

- A simple form of propagation makes sure all arcs are consistent:

NT Q WA NT Q NSW \" SA
At Eam| = B BEoE] =
Rve

- Arc SA to NSW is consistent: for every x in the tail there is some vy in
the head which could be assigned without violating a constraint

52

Arc consistency of an entire CSP (3/06)

- A simple form of propagation makes sure all arcs are consistent:

NT [i g WA NT Q NSW ' SA
A [— 1 [E[EEE] O
Rve

\/V

Arc NSW to SA is not consistent: if we assign NSW = blue, there is no valid
assignment left for SA

To make this arc consistent, we delete NSW = blue from the tail

53

Arc consistency of an entire CSP (4/06)

- A simple form of propagation makes sure all arcs are consistent:

NT Q WA NT Q NSW \'} SA
SA— [N B [mrmE] =
\V\ “—

Remember that arc V to NSW was consistent, when NSW had red
and blue in its domain

- After removing blue from NSW, this arc might not be consistent
anymore! We need to recheck this arc.

Important: If X loses a value, neighbors of X need to be rechecked!

54

Arc consistency of an entire CSP (5/06)

- A simple form of propagation makes sure all arcs are consistent:

NT A WA NT Q NSW \'} SA
‘ A s [— 1 [m | EH] O

- Arc SA to NT is inconsistent. We make it consistent by deleting from
the tail (SA = blue).

95

Arc consistency of an entire CSP (6/06)

- A simple form of propagation makes sure all arcs are consistent:

NT Q WA NT Q NSW \") SA
At] N O 1
Rve

- SA has an empty domain, so we detect failure. There is no way to
solve this CSP with WA =red and Q = green, so we backtrack.

- Arc consistency detects failure earlier than forward checking
- Can be run as a preprocessor or after each assignment

56

Arc consistency algorithm: AC-3

For each arc (Xi,Xj) in the queue
Remove it from queue
Makes X; arc-consistent with respect to X;
1) If D; remains unchanged then continue
2) If|D;| = 0 then return false
3) Foreach neighbor X}, of X; except to X; do

add (X, X;) to queue :

If domain of X; loses a value,
neighbors of X; must be rechecked

» Removing a value from a domain may cause further inconsistency, so
we have to repeat the procedure until everything is consistent.

» When queue is empty, resulted CSP is equivalent to the original CSP.
Same solution (usually reduced domains speed up the search)
57

Arc consistency algorithm: AC-3

function AC_3(csp) returns false if an inconsistency is found and true otherwise
inputs: csp, a binary CSP with components X, D, C
local variables: queue, a queue of arcs, initially all the arcs in csp

while queue is not empty do
(Xi, X;) <« REMOVE_FIRST (queue)
if REVISE (csp, X;, X;) then
If size of D; = 0 then return false
for each X in X;. NEIGHBORS — {X;} do
add Xy, X to queue

function REVISE (csp, X;, X;) returns true iff we revise the domain of X;
revised « false
for each x in D; do
if no value y in D; allows (x, y) to satisfy the constraint between X; and X; then
delete x from D;
revised « true
return revised

- N

Makes X; arc-consistent with respect to X;

AC-3: time complexity
- Time complexity (n variables, ¢ binary constraints, d
domain size): 0(cd?)
Each arc (X, X;) is inserted in the queue at most d times.

At most all values in domain X; can be deleted.

Checking consistency of an arc: 0(d?)

- Detecting all possible future problems is NP-hard —
why?

59

Limitations of arc consistency

- After enforcing arc consistency: ‘

Can have one solution left
Can have multiple solutions left
Can have no solutions left (and not know it) ®

<

What went
wrong here?

.
.

60

Arc consistency of an entire CSP

- A simple form of propagation makes sure all arcs are consistent

| ‘ NT i
SA
NSW

Vv

- Important: If X loses a value, neighbors of X need to be rechecked!
- Arc consistency detects failure earlier than forward checking

- Can be run as a preprocessor or after each assignment
- What'’s the downside of enforcing arc consistency?

61

Inference during the search process

- |t can be more powerful than inference in the
preprocessing stage.

- Interleaving search and inference

62

Arc consistency: map coloring example

- For general map coloring problem all pairs of

INT |

variables are arc-consistent if |D;| = 2(i=1,...,n) W ﬁﬁ__ i

- In this case, arc consistency as preprocessing can do nothing.

Fails to make enough inference

- We may need stronger notion of consistency to detect failure
at start.

63

3-consistency (path consistency): for any consistent assignment to each
set of two variables, a consistent value can be assigned to any other
variable.

Both of the possible assignments to set {IWA,SA} are inconsistent with
NT.

Q

NSW
QT
T

Constraint propagation

- FC makes the current variable arc-consistent but does not make all
the other variables arc-consistent

R

WA aa 1
WA NSW v SA T SA ILSW
[L L L L L IL L] _\4\

WA=red mmm] PEEIEEIE[EIE] A E[EON]
Q=green Im] W[EE[E EEfE] =E[EfN]

- NT and SA cannot both be blue!
FC does not look far enough ahead to find this inconsistency

- Maintaining Arc Consistency (MAC) - Constraint propagation

Forward checking + recursively propagating constraints when changing
domains

similar to AC-3 but only arcs related to the current variable are put in
the queue at start

64

Local consistency

- Node consistency (1-consistency)

Each single node’s domain has a value which meets
that node’s unary constraints

- Arc consistency (2-consistency)

For each pair of nodes, any consistent assignment to
one can be extended to the other

- k-consistency

For each k nodes, any consistent assignment to (k-1)
nodes can be extended to the kth node.

65

-= @

k-consistency e
WA ax 1@
SA NSW
T
- A CSP is k-consistent if for any set of k — 1 variables and for
any consistent assignment to those variables, a consistent
value can always be assigned to any kth variable.
E.g. 1-consistency = node-consistency

E.g. 2-consistency = arc-consistency

- Arc consistency does not detect all inconsistencies

E.g. 3-consistency = path-consistency

- Higher k more expensive to compute

66

Which level of consistency?

- Trade off between the required time to establish k-
consistency and amount of the eliminated search space.

If establishing consistency is slow, this can slow the search
down to the point where no propagation is better.

- Establishing k-consistency need exponential time and
space in k (in the worst case)

- Commonly computing 2-consistency and less commonly
3-consistency

67

Ordering

68

Ordering: Minimum Remaining Values (MRV)

Variable Ordering: Minimum remaining values (MRV):
Choose the variable with the fewest legal left values in its domain

==

Why min rather than max?

Also called “most constrained variable”

“Fail-fast” ordering

69

Ordering: Minimum Remaining Values (MRV)

- Chooses the variable with the fewest legal values
Fail first

- Also known as Most Constrained Variable (MCS)

- Most likely to cause a failure soon and so pruning the

search tree
SO S St LS

70

Degree heuristic

- Tie-breaker among MRV variables

- Degree heuristic: choose the variable with the most
constraints on remaining variables

To choose one who interferes the others most! |
reduction in branching factor

~p Oy~ CRy— R

71

Ordering: Least Constraining Value (LCV)

- Given a variable, choose the least constraining value:

one that rules out the fewest values in the remaining variables

leaving maximum flexibility for subsequent variable
assignments

Fail last (the most likely values first)

‘ _% Allows 1 value for SA
SV oS "H:<‘

% Allows D values for SA

- Assumption: we only need one solution RYA

72

Ordering: Least Constraining Value (LCV)

- Value Ordering: Least Constraining Value

Note that it may take some computation to
determine this! (E.g., rerunning filtering)

- Why least rather than most?

Combining these ordering ideas makes
1000 queens feasible

73

Solving CSP efficiently

- Which variable should be assigned next?
SELECT _UNASSIGNED _VARIABLE

- In what order should values of the selected variable be
tried?
ORDER DOMAIN VALUES

- What inferences should be performed at each step in the
search?
INFERENCE

74

CSP backtracking search

function BACKTRACKIN_SEARCH (csp) returns a solution, or failure
return BACKTRACK ({ }, csp)

function BACKTRACK (assignment, csp) returns a solution, or failure
if assignment is complete then return assignment
var « SELECT_UNASSIGNED _VARIABLE (csp, assignment)
for each value in ORDER_DOMAIN_VALUES (var, assignment, csp) do
if value is consistent with assignment then
add {var = value} to assignment
inferences « INFERENCE (csp, var, value)
if inferences # failure then
add inferences to assignment
result « BACKTRACK (assignemnt, csp)
if result # failure then return result
remove {var = value} and inferences from assignment
return failure

« Backtracking = DFS + variable-ordering + fail-on-violation

* What are the choice points?
75

CSPs solver phases: summary

- Combination of combinatorial search and heuristics to
reach reasonable complexity:

Search

Select a new variable assignment from several possibilities of
assigning values to unassigned variables

Base of the search process is a backtracking algorithm

Inference in CSPs (constraint propagation)

“looking ahead” in the search at unassigned variables to eliminate
some possible part of the future search space.

Using the constraints to reduce legal values for variables

Key idea is local consistency

76

Constraint graph

Binary CSP: each constraint relates (at most) two @

variables @ "‘Q

Binary constraint graph: nodes are variables, arcs @‘@

show constraints °

General-purpose CSP algorithms use the graph @
structure to speed up search. E.g., Tasmania is an
independent subproblem!

77

Constraint graph

- Nodes are variables, arcs are constraints

' NT
| Q
WA |
. SA [——
| L NSW
ba
T

- Enforcing local consistency in each part of the graph can cause
inconsistent values to be eliminated

78

Graph structure

Extreme case: independent subproblems
Example: Tasmania and mainland do not interact

- Connected components as independent sub-problems
The color of T is independent of those of other region

()
()
@‘@"@
- Suppose each sub-problem has h variables out of n ‘0
Worst-case solution cost is O((n/h)(d")) that is linear in .. @

Example: n =80, d = 2, h =20 (processing: 10°
nodes/sec)

280 = 4 billion years
(4)(2%°) = 0.4 seconds

79

Tree structured CSPs

- Any two variables are connected by only one path

- Theorem: if the constraint graph has no loops, the CSP can be
solved in O(n d?) time

Compare to general CSPs, where worst-case time is O(d")

(4) (E)
(58—
© G

This property also applies to probabilistic reasoning (later): an example of
the relation between syntactic restrictions and the complexity of reasoning

80

Tree structured CSPs: topological ordering

- Construct a rooted tree (picking any variable to be root, ...)

(4] (E)
(8)—~(D
G G

- Order variables from root to leaves such that every node’s
parent precedes it in the ordering (topological ordering)

81

Tree structured CSPs

- Algorithm for tree-structured CSPs:

Order: Choose a root variable, order variables so that
parents precede children

2

Remove backward:

For i=n:2, apply ArcConsistent(Parent(X),X)
Assign forward:

For i=1:n, assign X, consistently with Parent(X;)

Tree structured CSP Solver

X < Topological Sort
fori =n downto 2 do remove all values from

Make-Arc-Consistent(Parent(X;), X;)=> domain of Parent(X;) which
fori = 1ton do may violate arc-consistency.

X; < any consistent value (with its parent) in D; ‘

- After running loopl, any arc from a parent to its child is arc-
consistent.

- = if the constraint graph has no loops, the CSP can be solved
in 0(nd?) time.

83

function TREE_CSP_SOLVER(csp) returns a solution or failure
input: csp, a CSP with components X,D, C

n < number of variables in X
assignment < an empty assignment
root < any variable in X
X «TOPOLOGICAL(X,root)
for j = ndown to 2 do
MAKE_ARC_CONSISTENT (PARENT (X;), X;))
if it cannot be made consistent then return failure
fori =1tondo
assignment|[X;] < anyconsistent value from D;
if there is no consistent value then return failure
return assignment

84

Tree structured CSPs

Claim 1: After backward pass, all root-to-leaf arcs are consistent

Proof: Each X—Y was made consistent at one point and Y’s domain could
not have been reduced thereafter (since Y’s children were processed before

(AHBHCNDHENFE

Claim 2: If root-to-leaf arcs are consistent, forward assignment will not
backtrack

Proof: Induction on position

Why doesn’t this algorithm work with cycles in the constraint graph?

Note: we’ll see this basic idea again with Bayes’ nets

Reduction of general graphs into trees

- Removing nodes

Nearly Tree-Structured CSPs

() ()
SO N
QO @

- Conditioning: instantiate a variable, prune its neighbors' domains

- Cutset conditioning: instantiate (in all ways) a set of variables such that
the remaining constraint graph is a tree

Cut-set conditioning

[Choose a cutset]

e \ i
/A@s@,

9‘:‘9

(all possible ways)

[Instantiate the cutset]
()

N
A

Compute residual G
CSP for each ¢ ¢
assignment) = o
2 O ¢
[Solve the residual £ .
CSPs (tree structured) | S

A

!

<4—

M

Cut-set conditioning

1) Find a subset S such that the remaining graph becomes a tree

2) For each possible consistent assignment to S
a) remove inconsistent values from domains of remaining variables
b) solve the remaining CSP which has a tree structure

- Cutset size c gives runtime 0((d¢) (n —¢) d*)
very fast for small ¢
ccanbeaslargeasn — 2

89

Tree decomposition

- Create a tree-structured graph of overlapping sub-
problems (each sub-problem as a mega-variable)

- Solve each sub-problem (enforcing local constraints)

- Solve the tree-structured CSP over mega-variables

90

Tree decomposition

- Include all variables

- Each constraint must be in at least one sub problem.

- |f a variable is in two sub-probs, it must be in all sub-
probs along the path.

91

Tree decomposition*®

Idea: create a tree-structured graph of mega-variables
Each mega-variable encodes part of the original CSP
Subproblems overlap to ensure consistent solutions @

M1 M2 M3 M4

> > >
«Q «Q «Q
= = =
(] D [0
@ 0] (0]
o o o
=]] =}
(2] (2] (2]
0 0 0
D D B
(] (] [0
o o [oB
< < <
5 5 5
() (2] ()

{(WA=r,SA=g,NT=b), {(NT=r,SA=g,Q=b), Agree: (M1,M2)
(V\;A=b,SA=r,NT=g), (N}T=b,SA=g,Q=r), {(WA=g,SA=g NT=g), (NT=g,SA=g,Q=9)), ...}

Solving CSPs by local search algorithms

- In the CSP formulation as a search problem, path is
irrelevant, so we can use complete-state formulation

- State: an assignment of values to variables

- Successors(s): all states resulted from s by choosing a
new value for a variable

- Cost function h(s): Number of violated constraints
- Global minimum: h(s) =0

93

[terative algorithms for CSPs

- Local search methods typically work with “complete” states,
i.e., all variables assigned

- To apply to CSPs:

Take an assignment with unsatisfied constraints

Operators reassign variable values .i‘ —> ‘i‘

- Algorithm: While not solved,
Variable selection: randomly select any conflicted variable
Value selection: min-conflicts heuristic:

Choose a value that violates the fewest constraints
i.e., hill climb with h(n) = -total number of violated constraints

94

function MIN_CONFLICTS (csp, max _steps) returns a solution or failure
inputs: ¢sp, a constraint satisfaction problem
max_steps, the number of steps allowed before giving up

current < an initial complete assignment for csp
fori = 1 to max _steps do
~if current is a solution for csp then return current
var < a randomly chosen conflicted variable from csp. VARIABLES

value < the value v for var that minimizes CONFLICTS (var, v, current, csp)

set var = value in current

return failure

if current state is consistent then
return it

else
choose a random variable v, and change assignment of v
to a value that causes minimum conflict.

95

8-Queens example

96

4-Queens example

:> I-.-t* ':> I..‘
[] ‘E *

h=5 h=2 h=0

97

Local search for CSPs

- Variable selection: randomly select any conflicted variable

- Value selection by min-conflicts heuristic

choose value that violates the fewest constraints
i.e., hill-climbing

- Given random initial state, it can solve n-queens in almost

constant time for arbitrary n with high probability
n = 1000000 in an average of 50 steps

- N-queens is easy for local search methods (while quite tricky

for backtracking)
Solutions are very densely distributed in the space and any initial
assignment is guaranteed to have a solution nearby.

98

Performance of Min-Conflicts

Given random initial state, can solve n-queens in almost constant time for
arbitrary n with high probability (e.g., n =10,000,000)!

The same appears to be true for any randomly-generated CSP except in a
narrow range of the ratio

. number of constraints
number of variables

CPU
time

|
critical
ratio

99

Summary

CSP benefits
Standard representation of many problems
Generic heuristics (no domain specific expertise)

CSPs solvers (based on systematic search)

Basic solution: backtracking search :J‘f\:t’;
’\lf

Speed-ups: _
Ordering 3 \ B N
Filtering
Structure e

Graph structure may be useful in solving CSPs efficiently.

Local search methods for CSPs: Iterative min-conflicts is usually effective in
solving CSPs.

100

