
Soleymani

Constraint Satisfaction Problems
CE417: Introduction to Artificial Intelligence
Sharif University of Technology
Fall 2022

“Artificial Intelligence: A Modern Approach”, 3rd Edition, Chapter 6
Most slides have been adapted from Klein and Abdeel, CS188, UC Berkeley.

Constraint Satisfaction Problems

2

Outline
• Constraint Satisfaction Problems (CSP)
• Representation for wide variety of problems
• CSP solvers can be faster than general state-space searchers

• Backtracking search for CSPs
• Inference in CSPs
• Problem Structure
• Local search for CSPs

3

What is CSPs?
• In CSPs, the problem is to search for a set of values for the

variables (features) so that the assigned values satisfy
constraints.

• CSPs yield a natural representation for a wide variety of
problems
• CSP search algorithms use general-purpose heuristics based

on the structure of states

4

What is CSPs?
• Components of a CSP

• 𝑋 is a set of variables {𝑋1, 𝑋2, … , 𝑋𝑛}

• 𝐷 is the set of domains {𝐷1, 𝐷2, … , 𝐷𝑛} where 𝐷𝑖 is the domain of 𝑋𝑖
• 𝐶 is a set of constraints {𝐶1, 𝐶2, … , 𝐶𝑚}

• Each constraint limits the values that variables can take (e.g., 𝑋& ≠ 𝑋2)

• Solving a CSP
• State: An assignment of values to some or all of the variables

• Solution (goal): A complete and consistent assignment
• Consistent: An assignment that does not violate any constraint

• Complete: All variables are assigned.

5

CSP Examples

6

CSP: Map coloring example
• Coloring regions with tree colors such that no neighboring

regions have the same color
• Variables corresponding to regions: 𝑋 = {𝑊𝐴,𝑁𝑇, 𝑄, 𝑁𝑆𝑊, 𝑉, 𝑆𝐴, 𝑇}
• The domain of all variables is {𝑟𝑒𝑑, 𝑔𝑟𝑒𝑒𝑛, 𝑏𝑙𝑢𝑒}
• Constraints: adjacent regions must have different colors

𝐶 = {𝑆𝐴 ≠ 𝑊𝐴, 𝑆𝐴 ≠ 𝑁𝑇, 𝑆𝐴 ≠ 𝑄, 𝑆𝐴 ≠ 𝑁𝑆𝑊, 𝑆 ≠ 𝑉,
𝑊𝐴 ≠ 𝑁𝑇,𝑁𝑇 ≠ 𝑄, 𝑄 ≠ 𝑁𝑆𝑊,𝑁𝑆𝑊 ≠ 𝑉}

• A solution:
{𝑊𝐴 = 𝑟𝑒𝑑 , 𝑁𝑇 = 𝑔𝑟𝑒𝑒𝑛, 𝑄 = 𝑟𝑒𝑑,
𝑁𝑆𝑊 = 𝑔𝑟𝑒𝑒𝑛, 𝑉 = 𝑟𝑒𝑑, 𝑇 = 𝑔𝑟𝑒𝑒𝑛}

7

Example: N-Queens
• Variables: {𝑄1, 𝑄2 , … ,𝑄#}
• Domains: {1,2, … , 𝑁}
• Constraints:
• Implicit: ∀𝑖, 𝑗 ≠ 𝑖 𝑛𝑜𝑛_𝑡ℎ𝑟𝑒𝑎𝑡𝑒𝑛𝑖𝑛𝑔(𝑄% , 𝑄&)
• Explicit: 𝑄% , 𝑄& ∈ { 1,3 , 1,4 , … , (8,6)}

8

Example: Sudoku

§ Variables:
§ Each (open) square

§ Domains:
§ {1,2,…,9}

§ Constraints:

9-way alldiff for each row

9-way alldiff for each column

9-way alldiff for each region

(or can have a bunch of
pairwise inequality
constraints)

9

Varieties of CSPs and constraints

10

Varieties of CSPs
• Discrete Variables

• Finite domains
• Size dmeans O(dn) complete assignments
• E.g., Boolean CSPs, including Boolean satisfiability (NP-

complete)
• Infinite domains (integers, strings, etc.)

• E.g., job scheduling, variables are start/end times for each job
• Linear constraints solvable, nonlinear undecidable

• Continuous variables
• E.g., start/end times for Hubble Telescope observations
• Linear constraints solvable in polynomial time by LP methods

11

Varieties of constraints
• Varieties of Constraints

• Unary constraints involve a single variable (equivalent to
reducing domains), e.g.:

• Binary constraints involve pairs of variables, e.g.:

• Higher-order constraints involve 3 or more variables:
e.g., cryptarithmetic column constraints

• Preferences (soft constraints):
• E.g., red is better than green
• Often representable by a cost for each variable

assignment
• Gives constrained optimization problems
(We’ll ignore these until we get to Bayes’ nets)

12

Real-world CSPs
• Assignment problems: e.g., who teaches what class
• Timetabling problems: e.g., which class is offered when and where?
• Hardware configuration
• Transportation scheduling
• Factory scheduling
• Circuit layout
• Fault diagnosis
• … lots more!

• Many real-world problems involve real-valued variables…

13

Solving CSPs

14

Solving CSPs as a systematic search problem
• Initial State: No assignment { }
• Actions or successor function: assign a value to an unassigned

variable that does not conflict with current assignment
• Goal test: Consistent & complete assignment
• Path cost: not important

We’ll start with the straightforward,
naïve approach, then improve it

15

Properties of CSPs as a systematic search problem
• Generic problem formulation: same formulation for all CSPs

• Every solution appears at depth 𝑛 with 𝑛 variables

• Which search algorithm is proper?
• Depth-limited search

• Branching factor is 𝑛𝑑 at the top level, 𝑏 = (𝑛 − 𝑙)𝑑 at depth
𝑙, hence there are 𝑛! 𝑑𝑛 leaves.
• However, there are only 𝑑' complete assignments.

16

Assignment community
• When assigning values to variables, we reach the same partial

assignment regardless of the order of variables

𝑛!×𝑑𝑛

WA NT TWA WA

WA
NT

WA
NT

WA
NT

(𝑛×𝑑)×((𝑛 − 1)×𝑑)
NT
WA

Equal!
There are 𝑛!×𝑑𝑛 leaves in the tree but only 𝑑𝑛 distinct states!

….
TT

….

NT

…

𝑛×𝑑

17

Backtracking search

18

Backtracking search
• Backtracking search is the basic uninformed algorithm for solving CSPs

• Idea 1: One variable at a time
• Variable assignments are commutative, so fix ordering
• i.e., [WA = red then NT = green] same as [NT = green then WA = red]
• Only need to consider assignments to a single variable at each step

• Idea 2: Check constraints as you go
• i.e. consider only values which do not conflict previous assignments
• Might have to do some computation to check the constraints
• “Incremental goal test”

• Depth-first search with these two improvements
is called backtracking search (not the best name)

• Can solve n-queens for n » 25

19

Backtracking search
• Depth-first search for CSPs with single-variable assignments is

called backtracking search
• assigns one variable at each level (eventually they all have to
be assigned.)

• Naïve backtracking is not generally efficient for solving CSPs.
• More heuristics will be introduced later to speedup it.

20

Backtracking search
• Nodes are partial assignments

• Incremental completion
• Each partial candidate is the parent of all candidates that differ from it

by a single extension step.

• Traverses the search tree in depth first order.

• At each node c
• If it cannot be completed to a valid solution, the whole sub-tree rooted

at c is skipped (not promising branches are pruned).
• Otherwise, the algorithm (1) checks whether c itself is a valid solution,

returns it; and (2) recursively enumerates all sub-trees of c.

21

Search tree
} Variable assignments in the order:𝑊𝐴,𝑁𝑇, 𝑄,…

WA
NT
SA

Q
NSW
V
T

22

General backtracking search
function 𝐵𝐴𝐶𝐾𝑇𝑅𝐴𝐶𝐾(𝑣) returns a solution, or failure

if there is a solution at 𝑣 then return solution
for each child 𝑢 of 𝑣 do

if 𝑃𝑟𝑜𝑚𝑖𝑠𝑖𝑛𝑔(𝑢) then
𝑟𝑒𝑠𝑢𝑙𝑡 ← 𝐵𝐴𝐶𝐾𝑇𝑅𝐴𝐶𝐾(𝑢)
if 𝑟𝑒𝑠𝑢𝑙𝑡 ≠ failure return 𝑟𝑒𝑠𝑢𝑙𝑡

return failure

function 𝐵𝐴𝐶𝐾𝑇𝑅𝐴𝐶𝐾(𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡, 𝑐𝑠𝑝) returns an assignment, or failure
If 𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡 is complete then return 𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡
𝑣𝑎𝑟 ← select an unassigned variable
for each 𝑣𝑎𝑙 in 𝐷𝑜𝑚𝑎𝑖𝑛(𝑣𝑎𝑟) do

if 𝐶𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑡(𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡 ∪ {𝑣𝑎𝑟 ← 𝑣𝑎𝑙𝑢𝑒}, 𝑐𝑠𝑝) then
𝑟𝑒𝑠𝑢𝑙𝑡 ← 𝐵𝐴𝐶𝐾𝑇𝑅𝐴𝐶𝐾(𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡 ∪ {𝑣𝑎𝑟 ← 𝑣𝑎𝑙𝑢𝑒}, 𝑐𝑠𝑝)
if 𝑟𝑒𝑠𝑢𝑙𝑡 ≠ failure return 𝑟𝑒𝑠𝑢𝑙𝑡

return failure
23 Backtracking = DFS + variable-ordering + fail-on-violation

4-Queens

24

4-Queens

25

4-Queens

26

4-Queens

27

4-Queens

28

4-Queens

29

4-Queens

Solution30

Naïve backtracking (late failure)
• Naïve backtracking is not generally efficient for solving CSPs.
• Map coloring with three colors
• {𝑊𝐴 = 𝑟𝑒𝑑, 𝑄 = 𝑏𝑙𝑢𝑒} can not be completed.
• However, the backtracking search does not detect this before
selecting but 𝑁𝑇 and 𝑆𝐴 variables

WA
NT

SA
Q

NSW
V
T

Variable NT has no
possible value. But
it is not detected
until tying to assign
it a value.

𝑊𝐴 = 𝑟𝑒𝑑

𝑄 = 𝑏𝑙𝑢𝑒
𝑁𝑆𝑊
𝑉
𝑇

𝑆𝐴
𝑁𝑇

31

Improving backtracking

• General-purpose ideas give huge gains in speed

• Filtering: Can we detect inevitable failure early?

• Ordering:
• Which variable should be assigned next?
• In what order should its values be tried?

• Structure: Can we exploit the problem structure?

32

Filtering
• Filtering: Keep track of domains for unassigned variables
and cross off bad options
• Filtering by inference (looking ahead) in solving CSPs

33

Forward Checking (FC)
• When selecting a value for a variable, infer new domain

reductions on neighboring unassigned variables.
• Terminate search when a variable has no legal value

WA
NT
SA

Q
NSW
V
T

34

Forward Checking (FC)
• When selecting a value for a variable, infer new domain

reductions on neighboring unassigned variables.
• Terminate search when a variable has no legal value

WA
NT
SA

Q
NSW
V
T

𝑊𝐴 = 𝑟𝑒𝑑

35

Forward Checking (FC)
• When selecting a value for a variable, infer new domain

reductions on neighboring unassigned variables.
• Terminate search when a variable has no legal value

WA
NT
SA

Q
NSW
V
T

𝑊𝐴 = 𝑟𝑒𝑑
𝑄 = 𝑔𝑟𝑒𝑒𝑛

36

Forward Checking (FC)
• When selecting a value for a variable, infer new domain

reductions on neighboring unassigned variables.
• Terminate search when a variable has no legal value

WA
NT
SA

Q
NSW
V
T

𝑊𝐴 = 𝑟𝑒𝑑
𝑄 = 𝑔𝑟𝑒𝑒𝑛
𝑉 = 𝑏𝑙𝑢𝑒

⟹ {𝑊𝐴 = 𝑟𝑒𝑑, 𝑄 = 𝑔𝑟𝑒𝑒𝑛, 𝑉 = 𝑏𝑙𝑢𝑒} is an inconsistent partial assignment

37

Example: 4-Queens

1

3
2

4

32 41

X1
{1,2,3,4}

X3
{1,2,3,4}

X4
{1,2,3,4}

X2
{1,2,3,4}

4-Qeens slides have been adopted from Dorr’s slides on CMSC-421 course38

Example: 4-Queens

1

3
2

4

32 41

X1
{1,2,3,4}

X3
{1,2,3,4}

X4
{1,2,3,4}

X2
{1,2,3,4}

39

Example: 4-Queens

1

3
2

4

32 41

X1
{1,2,3,4}

X3
{ ,2, ,4}

X4
{ ,2,3, }

X2
{ , ,3,4}

40

Example: 4-Queens

1

3
2

4

32 41

X1
{1,2,3,4}

X3
{ ,2, ,4}

X4
{ ,2,3, }

X2
{ , ,3,4}

41

Example: 4-Queens

1

3
2

4

32 41

X1
{1,2,3,4}

X3
{ , , , }

X4
{ , ,3, }

X2
{ , ,3,4}

42

Example: 4-Queens

1

3
2

4

32 41

X1
{1,2,3,4}

X3
{ ,2, ,4}

X4
{ ,2,3, }

X2
{ , , ,4}

43

Example: 4-Queens

1

3
2

4

32 41

X1
{1,2,3,4}

X3
{ ,2, ,4}

X4
{ ,2,3, }

X2
{ , , ,4}

44

Example: 4-Queens

1

3
2

4

32 41

X1
{1,2,3,4}

X3
{ ,2, , }

X4
{ , ,3, }

X2
{ , , ,4}

45

Example: 4-Queens

1

3
2

4

32 41

X1
{1,2,3,4}

X3
{ ,2, , }

X4
{ , ,3, }

X2
{ , , ,4}

46

Example: 4-Queens

1

3
2

4

32 41

X1
{1,2,3,4}

X3
{ ,2, , }

X4
{ , , , }

X2
{ , ,3,4}

47

Filtering: shortcoming
• Forward checking propagates information from assigned to

neighboring unassigned variables, but doesn't provide early
detection for all failures:

• NT and SA cannot both be blue!
• Why didn’t we detect this yet?
• Constraint propagation: reason from constraint to constraint

WA SA

NT Q

NSW

V

48

Consistency of a single arc
• An arc X ® Y is consistent iff for every x there is some y which could be

assigned without violating a constraint

• NT -> WA
• If NT = blue: we could assign WA = red
• If NT = green: we could assign WA = red
• If NT = red: there is no remaining assignment to WA that we can use
• Deleting NT = red from the tail makes this arc consistent

• Forward checking: Enforcing consistency of arcs pointing to each new
assignment

Delete from the tail!

WA SA

NT Q

NSW

V

49

Arc consistency
• 𝑋2 is arc-consistent with respect to 𝑋3

if for every value in 𝐷2 there is a consistent value in 𝐷3

• Example
• Variables: 𝑋 = 𝑋!, 𝑋"
• Domain: {0,1,2, … , 9}
• Constraint: 𝑋! = 𝑋""

• Is 𝑋! is arc-consistent w.r.t. 𝑋"?
• No, to be arc-consistent 𝐷𝑜𝑚𝑎𝑖𝑛(𝑋") = {0,1,4,9}

• Is 𝑋" is arc-consistent w.r.t. 𝑋!?
• No, to be arc-consistent 𝐷𝑜𝑚𝑎𝑖𝑛(𝑋#) = {0,1,2,3}

50

Arc consistency of an entire CSP (1/6)

51

• A simple form of propagation makes sure all arcs are consistent:

• Arc V to NSW is consistent: for every x in the tail there is some y in
the head which could be assigned without violating a constraint

Arc consistency of an entire CSP (2/6)

52

• A simple form of propagation makes sure all arcs are consistent:

• Arc SA to NSW is consistent: for every x in the tail there is some y in
the head which could be assigned without violating a constraint

Arc consistency of an entire CSP (3/6)

53

• A simple form of propagation makes sure all arcs are consistent:

• Arc NSW to SA is not consistent: if we assign NSW = blue, there is no valid
assignment left for SA

• To make this arc consistent, we delete NSW = blue from the tail

Arc consistency of an entire CSP (4/6)

54

• A simple form of propagation makes sure all arcs are consistent:

• Remember that arc V to NSW was consistent, when NSW had red
and blue in its domain

• After removing blue from NSW, this arc might not be consistent
anymore! We need to recheck this arc.

• Important: If X loses a value, neighbors of X need to be rechecked!

Arc consistency of an entire CSP (5/6)

55

• A simple form of propagation makes sure all arcs are consistent:

• Arc SA to NT is inconsistent. We make it consistent by deleting from
the tail (SA = blue).

Arc consistency of an entire CSP (6/6)

56

• A simple form of propagation makes sure all arcs are consistent:

• SA has an empty domain, so we detect failure. There is no way to
solve this CSP with WA = red and Q = green, so we backtrack.

• Arc consistency detects failure earlier than forward checking
• Can be run as a preprocessor or after each assignment

Arc consistency algorithm: AC-3
For each arc 𝑋#, 𝑋$ in the queue

Remove it from queue
Makes 𝑋# arc-consistent with respect to 𝑋$

1) If 𝐷# remains unchanged then continue
2) If |𝐷#| = 0 then return false
3) For each neighbor 𝑋% of 𝑋# except to 𝑋$ do

add 𝑋%, 𝑋# to queue

If domain of 𝑋$ loses a value,
neighbors of 𝑋$ must be rechecked

} Removing a value from a domain may cause further inconsistency, so
we have to repeat the procedure until everything is consistent.

} When queue is empty, resulted CSP is equivalent to the original CSP.
} Same solution (usually reduced domains speed up the search)
57

Arc consistency algorithm: AC-3
function 𝐴𝐶_3(𝑐𝑠𝑝) returns false if an inconsistency is found and true otherwise

inputs: 𝑐𝑠𝑝, a binary CSP with components 𝑋, 𝐷, 𝐶
local variables: 𝑞𝑢𝑒𝑢𝑒, a queue of arcs, initially all the arcs in 𝑐𝑠𝑝

while 𝑞𝑢𝑒𝑢𝑒 is not empty do
(𝑋", 𝑋#) ← 𝑅𝐸𝑀𝑂𝑉𝐸_𝐹𝐼𝑅𝑆𝑇(𝑞𝑢𝑒𝑢𝑒)
if 𝑅𝐸𝑉𝐼𝑆𝐸(𝑐𝑠𝑝, 𝑋", 𝑋#) then

If size of 𝐷" = 0 then return 𝑓𝑎𝑙𝑠𝑒
for each 𝑋$ in 𝑋". 𝑁𝐸𝐼𝐺𝐻𝐵𝑂𝑅𝑆 − {𝑋#} do

add (𝑋$, 𝑋") to 𝑞𝑢𝑒𝑢𝑒

function 𝑅𝐸𝑉𝐼𝑆𝐸(𝑐𝑠𝑝, 𝑋", 𝑋#) returns true iff we revise the domain of 𝑋"
𝑟𝑒𝑣𝑖𝑠𝑒𝑑 ← 𝑓𝑎𝑙𝑠𝑒
for each 𝑥 in 𝐷" do

if no value 𝑦 in 𝐷# allows (𝑥, 𝑦) to satisfy the constraint between 𝑋" and 𝑋# then
delete 𝑥 from 𝐷"
𝑟𝑒𝑣𝑖𝑠𝑒𝑑 ← 𝑡𝑟𝑢𝑒

return 𝑟𝑒𝑣𝑖𝑠𝑒𝑑

Makes 𝑋$ arc-consistent with respect to 𝑋%58

AC-3: time complexity
• Time complexity (𝑛 variables, 𝑐 binary constraints, 𝑑
domain size): 𝑂(𝑐𝑑K)
• Each arc (𝑋D , 𝑋E) is inserted in the queue at most 𝑑 times.
• At most all values in domain 𝑋E can be deleted.

• Checking consistency of an arc: 𝑂(𝑑F)

• Detecting all possible future problems is NP-hard –
why?

59

Limitations of arc consistency

• After enforcing arc consistency:
• Can have one solution left
• Can have multiple solutions left
• Can have no solutions left (and not know it)

What went
wrong here?

60

Arc consistency of an entire CSP

• A simple form of propagation makes sure all arcs are consistent:

• Important: If X loses a value, neighbors of X need to be rechecked!

• Arc consistency detects failure earlier than forward checking
• Can be run as a preprocessor or after each assignment
• What’s the downside of enforcing arc consistency?

WA SA

NT Q

NSW

V

61

Inference during the search process

• It can be more powerful than inference in the
preprocessing stage.

• Interleaving search and inference

62

Arc consistency: map coloring example

W
A

NT

SA
Q

NSW
V

T

63

• For general map coloring problem all pairs of
variables are arc-consistent if 𝐷E ≥ 2(𝑖 = 1,… , 𝑛)

• In this case, arc consistency as preprocessing can do nothing.
• Fails to make enough inference

• We may need stronger notion of consistency to detect failure
at start.
• 3-consistency (path consistency): for any consistent assignment to each

set of two variables, a consistent value can be assigned to any other
variable.

• Both of the possible assignments to set {𝑊𝐴, 𝑆𝐴} are inconsistent with
𝑁𝑇.

Constraint propagation
• FC makes the current variable arc-consistent but does not make all
the other variables arc-consistent

• NT and SA cannot both be blue!
• FC does not look far enough ahead to find this inconsistency

• Maintaining Arc Consistency (MAC) - Constraint propagation
• Forward checking + recursively propagating constraints when changing

domains
• similar to AC-3 but only arcs related to the current variable are put in

the queue at start

WA
NT
SA

Q
NSW
V
T𝑊𝐴 = 𝑟𝑒𝑑

𝑄 = 𝑔𝑟𝑒𝑒𝑛

64

Local consistency
• Node consistency (1-consistency)
• Each single node’s domain has a value which meets

that node’s unary constraints

• Arc consistency (2-consistency)
• For each pair of nodes, any consistent assignment to

one can be extended to the other

• k-consistency
• For each k nodes, any consistent assignment to (k-1)

nodes can be extended to the kth node.

65

k-consistency
• Arc consistency does not detect all inconsistencies

• A CSP is k-consistent if for any set of 𝑘 − 1 variables and for
any consistent assignment to those variables, a consistent
value can always be assigned to any 𝑘th variable.
• E.g. 1-consistency = node-consistency
• E.g. 2-consistency = arc-consistency
• E.g. 3-consistency = path-consistency

• Higher k more expensive to compute

WA
NT
SA

Q
NSW
V
T

66

Which level of consistency?
• Trade off between the required time to establish k-
consistency and amount of the eliminated search space.
• If establishing consistency is slow, this can slow the search

down to the point where no propagation is better.

• Establishing k-consistency need exponential time and
space in 𝑘 (in the worst case)

• Commonly computing 2-consistency and less commonly
3-consistency

67

Ordering

68

Ordering: Minimum Remaining Values (MRV)

• Variable Ordering: Minimum remaining values (MRV):
• Choose the variable with the fewest legal left values in its domain

• Why min rather than max?
• Also called “most constrained variable”
• “Fail-fast” ordering

69

Ordering: Minimum Remaining Values (MRV)
• Chooses the variable with the fewest legal values
• Fail first

• Also known as Most Constrained Variable (MCS)

• Most likely to cause a failure soon and so pruning the
search tree

70

Degree heuristic
• Tie-breaker among MRV variables

• Degree heuristic: choose the variable with the most
constraints on remaining variables
• To choose one who interferes the others most!
• reduction in branching factor WA

NT

SA
Q

NSW
V
T

71

Ordering: Least Constraining Value (LCV)
• Given a variable, choose the least constraining value:
• one that rules out the fewest values in the remaining variables
• leaving maximum flexibility for subsequent variable
assignments
• Fail last (the most likely values first)

• Assumption: we only need one solution
WA

NT
SA

Q
NSW
V
T

72

Ordering: Least Constraining Value (LCV)

• Value Ordering: Least Constraining Value
• Note that it may take some computation to

determine this! (E.g., rerunning filtering)

• Why least rather than most?

• Combining these ordering ideas makes
1000 queens feasible

73

Solving CSP efficiently
• Which variable should be assigned next?
• 𝑆𝐸𝐿𝐸𝐶𝑇_𝑈𝑁𝐴𝑆𝑆𝐼𝐺𝑁𝐸𝐷_𝑉𝐴𝑅𝐼𝐴𝐵𝐿𝐸

• In what order should values of the selected variable be
tried?
• 𝑂𝑅𝐷𝐸𝑅_𝐷𝑂𝑀𝐴𝐼𝑁_𝑉𝐴𝐿𝑈𝐸𝑆

• What inferences should be performed at each step in the
search?
• 𝐼𝑁𝐹𝐸𝑅𝐸𝑁𝐶𝐸

74

CSP backtracking search
function 𝐵𝐴𝐶𝐾𝑇𝑅𝐴𝐶𝐾𝐼𝑁_𝑆𝐸𝐴𝑅𝐶𝐻(𝑐𝑠𝑝) returns a solution, or failure

return 𝐵𝐴𝐶𝐾𝑇𝑅𝐴𝐶𝐾({ }, 𝑐𝑠𝑝)

function 𝐵𝐴𝐶𝐾𝑇𝑅𝐴𝐶𝐾(𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡, 𝑐𝑠𝑝) returns a solution, or failure
if 𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡 is complete then return 𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡
𝑣𝑎𝑟 ← 𝑆𝐸𝐿𝐸𝐶𝑇_𝑈𝑁𝐴𝑆𝑆𝐼𝐺𝑁𝐸𝐷_𝑉𝐴𝑅𝐼𝐴𝐵𝐿𝐸(𝑐𝑠𝑝, 𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡)
for each 𝑣𝑎𝑙𝑢𝑒 in 𝑂𝑅𝐷𝐸𝑅_𝐷𝑂𝑀𝐴𝐼𝑁_𝑉𝐴𝐿𝑈𝐸𝑆(𝑣𝑎𝑟, 𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡, 𝑐𝑠𝑝) do

if 𝑣𝑎𝑙𝑢𝑒 is consistent with 𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡 then
add {𝑣𝑎𝑟 = 𝑣𝑎𝑙𝑢𝑒} to 𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡
𝑖𝑛𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑠 ← 𝐼𝑁𝐹𝐸𝑅𝐸𝑁𝐶𝐸(𝑐𝑠𝑝, 𝑣𝑎𝑟, 𝑣𝑎𝑙𝑢𝑒)
if 𝑖𝑛𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑠 ≠ 𝑓𝑎𝑖𝑙𝑢𝑟𝑒 then

add 𝑖𝑛𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑠 to 𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡
𝑟𝑒𝑠𝑢𝑙𝑡 ← 𝐵𝐴𝐶𝐾𝑇𝑅𝐴𝐶𝐾(𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑚𝑛𝑡, 𝑐𝑠𝑝)
if 𝑟𝑒𝑠𝑢𝑙𝑡 ≠ 𝑓𝑎𝑖𝑙𝑢𝑟𝑒 then return 𝑟𝑒𝑠𝑢𝑙𝑡

remove {𝑣𝑎𝑟 = 𝑣𝑎𝑙𝑢𝑒} and 𝑖𝑛𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑠 from 𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡
return 𝑓𝑎𝑖𝑙𝑢𝑟𝑒

75

• Backtracking = DFS + variable-ordering + fail-on-violation
• What are the choice points?

CSPs solver phases: summary
• Combination of combinatorial search and heuristics to
reach reasonable complexity:
• Search

• Select a new variable assignment from several possibilities of
assigning values to unassigned variables

• Base of the search process is a backtracking algorithm

• Inference in CSPs (constraint propagation)
• “looking ahead” in the search at unassigned variables to eliminate

some possible part of the future search space.
• Using the constraints to reduce legal values for variables

• Key idea is local consistency

76

Constraint graph

• Binary CSP: each constraint relates (at most) two
variables

• Binary constraint graph: nodes are variables, arcs
show constraints

• General-purpose CSP algorithms use the graph
structure to speed up search. E.g., Tasmania is an
independent subproblem!

77

Constraint graph
• Nodes are variables, arcs are constraints

• Enforcing local consistency in each part of the graph can cause
inconsistent values to be eliminated

WA
NT

SA
Q

NSW
V
T

78

Graph structure
• Extreme case: independent subproblems
• Example: Tasmania and mainland do not interact

• Connected components as independent sub-problems
• The color of 𝑇 is independent of those of other region

• Suppose each sub-problem has ℎ variables out of 𝑛
• Worst-case solution cost is 𝑂((𝑛/ℎ)(𝑑&)) that is linear in 𝑛

• Example: 𝑛 = 80, 𝑑 = 2, ℎ = 20 (processing: 10^
nodes/sec)
• 280 = 4 billion years
• (4)(220) = 0.4 seconds

79

Tree structured CSPs
• Any two variables are connected by only one path

• Theorem: if the constraint graph has no loops, the CSP can be
solved in O(n d2) time
• Compare to general CSPs, where worst-case time is O(dn)

• This property also applies to probabilistic reasoning (later): an example of
the relation between syntactic restrictions and the complexity of reasoning

80

Tree structured CSPs: topological ordering
• Construct a rooted tree (picking any variable to be root, …)

• Order variables from root to leaves such that every node’s
parent precedes it in the ordering (topological ordering)

81

Tree structured CSPs

• Algorithm for tree-structured CSPs:
• Order: Choose a root variable, order variables so that

parents precede children

Remove backward:
For i=n:2, apply ArcConsistent(Parent(Xi),Xi)
Assign forward:
For i=1:n, assign Xi consistently with Parent(Xi)

Tree structured CSP Solver

• After running loop1, any arc from a parent to its child is arc-
consistent.

• ⇒ if the constraint graph has no loops, the CSP can be solved
in 𝑂(𝑛𝑑F) time.

𝑋 ← Topological Sort
for 𝑖 = 𝑛 downto 2 do

Make-Arc-Consistent(Parent(XE), XE)
for 𝑖 = 1 to 𝑛 do

XE ← any consistent value (with its parent) in 𝐷E

remove all values from
domain of Parent(𝑋$) which
may violate arc-consistency.

83

function 𝑇𝑅𝐸𝐸_𝐶𝑆𝑃_𝑆𝑂𝐿𝑉𝐸𝑅(𝑐𝑠𝑝) returns a solution or failure
input: 𝑐𝑠𝑝, a CSP with components 𝑋,𝐷, 𝐶

𝑛 ← number of variables in 𝑋
𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡 ← an empty assignment
𝑟𝑜𝑜𝑡 ← any variable in 𝑋
𝑋 ← 𝑇𝑂𝑃𝑂𝐿𝑂𝐺𝐼𝐶𝐴𝐿(𝑋, 𝑟𝑜𝑜𝑡)
for 𝑗 = 𝑛 down to 2 do
𝑀𝐴𝐾𝐸_𝐴𝑅𝐶_𝐶𝑂𝑁𝑆𝐼𝑆𝑇𝐸𝑁𝑇(𝑃𝐴𝑅𝐸𝑁𝑇(𝑋$), 𝑋$))
if it cannot be made consistent then return 𝑓𝑎𝑖𝑙𝑢𝑟𝑒

for 𝑖 = 1 to 𝑛 do
𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡 𝑋# ← 𝑎𝑛𝑦𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑡 𝑣𝑎𝑙𝑢𝑒 𝑓𝑟𝑜𝑚 𝐷#
if there is no consistent value then return 𝑓𝑎𝑖𝑙𝑢𝑟𝑒

return 𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡

84

Tree structured CSPs
• Claim 1: After backward pass, all root-to-leaf arcs are consistent
• Proof: Each X®Y was made consistent at one point and Y’s domain could

not have been reduced thereafter (since Y’s children were processed before
Y)

• Claim 2: If root-to-leaf arcs are consistent, forward assignment will not
backtrack

• Proof: Induction on position

• Why doesn’t this algorithm work with cycles in the constraint graph?

• Note: we’ll see this basic idea again with Bayes’ nets

Reduction of general graphs into trees
• Removing nodes

• Collapsing nodes together

86

Nearly Tree-Structured CSPs

• Conditioning: instantiate a variable, prune its neighbors' domains

• Cutset conditioning: instantiate (in all ways) a set of variables such that
the remaining constraint graph is a tree

Cut-set conditioning

SA

SA SA SA

Instantiate the cutset
(all possible ways)

Compute residual
CSP for each
assignment

Solve the residual
CSPs (tree structured)

Choose a cutset

Cut-set conditioning

• Cutset size 𝑐 gives runtime 𝑂((𝑑_) (𝑛 − 𝑐) 𝑑F)
• very fast for small 𝑐
• 𝑐 can be as large as 𝑛 − 2

1) Find a subset S such that the remaining graph becomes a tree
2) For each possible consistent assignment to S

a) remove inconsistent values from domains of remaining variables
b) solve the remaining CSP which has a tree structure

89

Tree decomposition
• Create a tree-structured graph of overlapping sub-
problems (each sub-problem as a mega-variable)

• Solve each sub-problem (enforcing local constraints)

• Solve the tree-structured CSP over mega-variables

90

Tree decomposition
• Include all variables
• Each constraint must be in at least one sub problem.
• If a variable is in two sub-probs, it must be in all sub-

probs along the path.

91

Tree decomposition*

§ Idea: create a tree-structured graph of mega-variables
§ Each mega-variable encodes part of the original CSP
§ Subproblems overlap to ensure consistent solutions

M1 M2 M3 M4

{(WA=r,SA=g,NT=b),
(WA=b,SA=r,NT=g),
…}

{(NT=r,SA=g,Q=b),
(NT=b,SA=g,Q=r),
…}

Agree: (M1,M2) Î
{((WA=g,SA=g,NT=g), (NT=g,SA=g,Q=g)), …}

Agree on shared vars

N
T

SA

¹W
A

¹ ¹

Q

SA

¹N
T

¹ ¹

Agree on shared vars

NS
W

SA

¹Q

¹ ¹

Agree on shared vars
V

SA

¹NS
W

¹ ¹

Solving CSPs by local search algorithms
• In the CSP formulation as a search problem, path is
irrelevant, so we can use complete-state formulation

• State: an assignment of values to variables
• Successors(s): all states resulted from 𝑠 by choosing a
new value for a variable

• Cost function ℎ(s): Number of violated constraints
• Global minimum: ℎ 𝑠 = 0

93

Iterative algorithms for CSPs
• Local search methods typically work with “complete” states,
i.e., all variables assigned

• To apply to CSPs:
• Take an assignment with unsatisfied constraints
• Operators reassign variable values

• Algorithm: While not solved,
• Variable selection: randomly select any conflicted variable
• Value selection: min-conflicts heuristic:

• Choose a value that violates the fewest constraints
• i.e., hill climb with h(n) = -total number of violated constraints

94

function𝑀𝐼𝑁_𝐶𝑂𝑁𝐹𝐿𝐼𝐶𝑇𝑆(𝑐𝑠𝑝,max _𝑠𝑡𝑒𝑝𝑠) returns a solution or failure
inputs: 𝑐𝑠𝑝, a constraint satisfaction problem

m𝑎𝑥_𝑠𝑡𝑒𝑝𝑠, the number of steps allowed before giving up

𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ← an initial complete assignment for 𝑐𝑠𝑝
for 𝑖 = 1 to max _𝑠𝑡𝑒𝑝𝑠 do

if 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 is a solution for 𝑐𝑠𝑝 then return current
𝑣𝑎𝑟 ← a randomly chosen conflicted variable from 𝑐𝑠𝑝. 𝑉𝐴𝑅𝐼𝐴𝐵𝐿𝐸𝑆
𝑣𝑎𝑙𝑢𝑒 ← the value 𝑣 for 𝑣𝑎𝑟 that minimizes 𝐶𝑂𝑁𝐹𝐿𝐼𝐶𝑇𝑆(𝑣𝑎𝑟, 𝑣, 𝑐𝑢𝑟𝑟𝑒𝑛𝑡, 𝑐𝑠𝑝)
set 𝑣𝑎𝑟 = 𝑣𝑎𝑙𝑢𝑒 in 𝑐𝑢𝑟𝑟𝑒𝑛𝑡

return 𝑓𝑎𝑖𝑙𝑢𝑟𝑒

if current state is consistent then
return it

else
choose a random variable v, and change assignment of v
to a value that causes minimum conflict.

95

8-Queens example

𝑄& = 3 𝑄' = 8

96

4-Queens example

97

Local search for CSPs
• Variable selection: randomly select any conflicted variable
• Value selection by min-conflicts heuristic

• choose value that violates the fewest constraints
• i.e., hill-climbing

• Given random initial state, it can solve n-queens in almost
constant time for arbitrary n with high probability
• 𝑛 = 1000000 in an average of 50 steps

• N-queens is easy for local search methods (while quite tricky
for backtracking)
• Solutions are very densely distributed in the space and any initial

assignment is guaranteed to have a solution nearby.

98

Performance of Min-Conflicts

• Given random initial state, can solve n-queens in almost constant time for
arbitrary n with high probability (e.g., n = 10,000,000)!

• The same appears to be true for any randomly-generated CSP except in a
narrow range of the ratio

99

Summary
• CSP benefits

• Standard representation of many problems
• Generic heuristics (no domain specific expertise)

• CSPs solvers (based on systematic search)
• Basic solution: backtracking search
• Speed-ups:

• Ordering
• Filtering
• Structure

• Graph structure may be useful in solving CSPs efficiently.

• Local search methods for CSPs: Iterative min-conflicts is usually effective in
solving CSPs.

100

